Upper Little Patuxent River Watershed Management Plan

PUBLIC MEETING NO. 2 March 24, 2009

US Army Corps of Engineers Baltimore District

Meeting Outline

- Welcome and Introductions
- Presentation
 - Project Goals
 - Watershed Study Overview
 - Watersheds 101
 - Upper Little Patuxent (ULP) Watershed Overview
 - Results and Concept Plans
 - Restoration Toolbox and Citizen Involvement
- General Q&A
- Breakout Groups by Subwatershed

Watershed Management Goals

To restore, enhance and protect the Upper Little Patuxent River Watershed's natural resources.

- Reduce negative impact of impervious surfaces
- Reduce levels of pollutants in waterways
- Reduce streambank erosion
- Increase forest area and connectivity of riparian habitats
- Increase public awareness and positive behaviors
- Protect private property

Why the Upper Little Patuxent River Watershed?

- Numerous existing studies
- ULP rated as high priority watershed, high impervious
- Countywide bioassessment average ratings of Poor and Very Poor
- Segments on Maryland 303(d) list for biological, cadmium, nutrients, sediment
- Headwaters of the Little Patuxent
- Opportunity to coordinate with current Columbia Association watershed study

Watershed Study Overview

- Phase I completed November 2007
 - Compilation and synthesis of previous studies and GIS data
 - Delineate watershed and subwatersheds
 - Identify data gaps
 - Scope Phase II

Watershed Study Overview

- Phase II
 - Conditions Assessment
 - Stream Corridor Assessment (SCA)
 - Pollutant loading estimates
 - Problem area prioritization
 - Community Meeting #1 June 2008
 - Develop watershed management strategy
 - Perform field investigations and develop concept plans and cost estimates for restoration and protection strategies
 - Implementation plan
 - Community Meeting #2 March 2009
 - Final Report

Watersheds 101

What is a Watershed?

Geomorphological Impacts

Impervious Cover Influences Water Quality

Pollutants build up on impervious surfaces and wash off into the stream system when it rains

Center for Watershed Protection

Harmful Pollutants in Runoff

Bacteria

Nutrients

Pesticides

Oil & Grease

Muddy Water

Heavy Metals (e.g. Zinc, Copper, Lead)

Center for Watershed Protection

Watershed Overview

Watershed Overview

Watershed Overview

- 17.3 square miles
- 44 miles of streams
- Major Roadways
 - Interstate 70
 - US Route 40
 - MD Route 144
 - US Route 29
 - MD Route 100
- Major Landmarks
 - Ellicott City
 - Carroll Farm
 - Turf Valley
 - Alpha Ridge
 - Meadowbrook Park

Subwatershed Overview

Land Use

Imperviousness

Stream Corridor Assessment

- Teams walked 44 miles
- Identified
 - Channel Alteration
 - Erosion Site
 - Inadequate Buffer
 - Pipe Outfall
 - Exposed Pipe
 - Fish Barrier
 - Trash Dumping
 - Construction
 - Unusual Condition
 - Representative Site
- Scored 1-5 for Severity, Correctibility and Access

Stream Corridor Assessment

Candidate Sites

- Candidate Sites
 - Most severe and correctible SCA data points
 - Concentrations of untreated impervious
 - Buffer enhancement that connect habitats
 - Citizen issues
- Mapping Effort Reforestation
- Field Effort
 - Retrofit Reconnaissance Inventory
 - Stream Restoration Sites

Candidate Sites

Candidate Sites Ranking

- Rank the top sites for full Concept Design
- Benefits
 - Quantity Control / Flooding
 - Water Quality
 - Water Temperature
 - Channel Erosion
 - Instream Habitat
 - Riparian Habitat
 - Fish Passage
 - Public Safety
 - Addressing Citizen Issue
 - Education / Outreach
 - Combined Effect
 - Impervious Area Treated

- Constraints
 - Environmental Permitting
 - Adjacent Landuse
 - Property Ownership
 - Facility Access
 - Design / Construction
 - Public Safety
 - Existing Utility Conflicts

Concept Sites

Concept Plans

Proposed Project

Project Number: LPX1_04A Subwatershed: Little Patuxent 1

Project Type: Pond Retrofit Project Size: 21.6 acre drainage area/ 3.6 acres impervious

Project Location: In open space between Burleigh Cottage Lane and Centennial Lane.

Upper Little Patuxent

Project Description: This project would entail retrofitting an existing pond situated between Burleigh Cottage Lane and Centennial Lane which captures runoff from neighborhoods along White Rose Way and Camelford Court. The pond would be excavated to increase detention volume to provide pollutant removal closer to current design standards. The design would incorporate water quality features such as a micropool, aquatic bench, forebay, and a meandering flow path. Because the project is a wet pond and is located near private residences, property owners would be kept informed and involved in the planning and design process.

Project Benefits:

Water Or	vality

Conversion to a wet pond / wetland designed to current standards would provide water quality treatment and pollutant removal.

Project Constraints:

Environmental	No environmental constraints are anticipated with this project.
Property Ownership	This project lies within County owned property (Burleigh Manor open space).
Facility Access	Access to this site is obtained from Centennial Lane.
Design / Construction	Traffic maintenance will be required due to volume of traffic on Centennial Lane.

Proposed Project

Project Number: 1689_1690 Subwatershed: Red Hill

Project Type: Stream Restoration Project Size: Approx, 600 linear feet

Project Location: Between Rolling Meadows and Golden Grain Court, upstream of the culvert at Wheatfield Way.

Upper Little Patuxent

Project Description: This project would require regrading and stabilization of banks in localized areas throughout the study reach to stabilize the existing actively eroding banks. In some areas the banks may require stone protection to further stabilize the bank. Many trees in the riparian buffer appear to be providing stabilization to the banks through the root masses and therefore should be preserved. A series of 3 knick points exist approximately 300 linear feet upstream of the culvert at Wheatfield Way. These knick points are currently holding the existing grade and should be stabilized using grade control structures in order to prevent further headcutting. A grade control structure should also be applied just upstream of the culvert at Wheatfield Way to further stabilize the culvert. An outfall enters the channel approximately 300 linear feet upstream of the culvert and should be stabilized in conjunction with the stream stabilization work. A riparian buffer enhancement will be applied to areas being regraded and along the left bank (facing downstream) to restore ecological function.

Project Benefits:

Stabilization	The stream banks will be stabilized to reduce scour. The channel bed will be stabilized using grade control structures to protect the existing knick points and prevent further headcutting.
Water Quality	Implementation of this project will provide a reduction in sediment supply and the associated water quality benefits.
Education	The project could provide educational benefits due to the proximity of the project to adjacent residential areas.

Concept Plans

roposed Project			Upper Li	ttle Patuxent			Unit Costs
Project Number: LPX1_04A Subwatershed: Little Patuxent 1						[
Project Type: Pond Retrofit Project Size: 21.6 acre drainage area/ 3.6 a	cres impe	ervious					Direct Construction
Cost Detail:				/	X I	/	Direct Construction
ITEM	QTY	UNITS	UNIT COST		/		
Site Work				/			
Clear and Grub	0.3	AC	\$5,000.00	\$1,250	/		Indiract Construction
Pavement / Sidewalk Removal		SY	\$7.50	\$0	/	/	
Curb-Gutter Removal		LF	\$10.00	\$0	/ /	/	
Remove Pilot Channels		LF	\$6.00	\$0	/ /		
Remove Barrel Pipe		LF	\$77.00	\$0	/ /		
Pond Construction			÷		//	I I	
Grading and Excavation (Class I)	588	CY	\$30.00	\$17.640	//		
Hauling and Disposal	588	CY	\$20.00	\$11,760	1//		(`ontingency
Embankment	000	CV.	\$60.00	\$0	V / V	/	contingency
Forebay	70	CY	\$45.00	\$3.555	V / /	11	
Safaty banch	225	cv	\$30.00	\$7,050	$\Lambda / /$		
Dises	200	10	\$30.00	\$0,000 80	' / /		
Outflow Rise		LO	\$10,000.00	30 60	V /	[
Outlow Pipe		LP	\$00.00	\$0 80,000	X /		Environmental Cleanance
Cutlet Protection	1	15	\$8,000.00	30,000	4 / /	/	Environmental Clearance
Fending Die Des Stabilization			\$20.00	30 / /	/ /	·	
Rip Rap Stabilization	4.054	LF	\$50.00	30			
SWM Landscaping	1,254	SY	\$10.00	\$12,540			
			Direct Construction Subtotal	\$61,795		ıг	
Indirect Costs				/	X /		
E/SC, MOT, MOS (20% of Directs or \$10,000)	1	LS	\$12,359.00	\$12,359	4/ /		Design and Surveys
Construction Stakeout (1,000 Day)	3	Day	\$3,000.00	\$3,000	//		Dosign and Durveys
			Base Construction Cost	\$77,154	V /	ΙL	
		M	lobilization (10% of Directs or \$1,000)	\$6,180	/ /		
			Subtotal	\$83,334	1/		
			Contingency (30%)	\$25,000	X		
			Construction Subtotal	\$108,334	1 /		Total Canital Cost
	Envt'l St	tudies / Perr	nitting (5% of Construction or \$5,000)	\$5,417			Total Capital Cost
Engineering and S	urveys (25	%of Constru	uction or \$40,000, maximum \$50,000)	\$40,000	T		-
			Total Capital Cost	\$153,750			
Operations and Maintenance Costs							
Annual Maintenance	6	Percent	\$3,708			[
Discount Rate	5	Percent				1	Life Cycle Cost
Expected Life	20	Years					
			Net Present Value of O&M Costs	\$46,206	$\boldsymbol{\ell}$		•
					1		

Watershed Management Plan

- Plan Purpose and Goals
- Watershed Conditions
 - Land Use and Impervious Surfaces
 - Stream Condition Stream Corridor Assessment
- Development of Detailed Strategies and Concept Plans
 - Field Investigation
 - Prioritization
 - Cost, benefits, constraints
- Implementation Plan
 - Rank the strategies and concepts incorporate cost
 - Funding Requirements and Sources
 - Monitoring Program and Success Tracking
 - Items for Additional Study

Restoration Toolbox

Bioretention Facility

Bioretention Facility

Sand Filter

Dry Pond Conversion Schematic

Dry Pond

Shallow Marsh

Retrofit Existing Pond

Wet Pond Schematic

Constructed Wetlands Schematic

Stream Restoration

Riparian Buffer Enhancement

What can homeowners do to improve the water quality in the Upper Little Patuxent River watershed?

Everyday Things

Pick up after your pet

Reduce the amount of fertilizer you use

Reduce runoff from your yard

Disconnect your downspouts

Reduce turf area

Remember that anything that runs off your driveway or lawn ends up in the creek Oil leaks

Pesticides

Plant a tree (or more) – Stream ReLeaf Program Reduce, Reuse and Recycle!!

Volume Reduction

There are both simple and complex ways to reduce runoff from your yard

- > downspout disconnection
- rainbarrels
- rain gardens
- lawn conversion

Bad Approach .

Good Approach . .

#311

Overfertilization? Too much turf?

Photo Copyright 1999, Center for Watershed Protection

Lack of riparian buffer.

Now What?

1	1			1		
M	M	N		14	LA	
1		how	Y		1	
		1)	1	1_	
Mon	Tue	Wed	Thr	Fri	Sat	Sur
			1	2	3	4
			· · · ·			
5	6	7	8	9	10	11
5 12	6 13	7	8 15	9 16	10 17	11
5 12 19	6 13 20	7 14 21	8 15 22	9 16 23	10 17 24	11 18 25

Time & Money

Time and Money

- Total Cost of Priority Projects (w/Concepts)
 \$17 million
- Typical Capital Budget for SWM Division
 \$1.25 million/year
- Phase projects into Capital Budget requests
- Cheasapeake Bay Trust Fund 2010 Grant
- Stormwater Utility?
- Advocate for funding

Next Steps

- Post report and concept plans to County website
- Add ULP priority sites into Countywide project backlog list.
- Public property vs Private property sites
- County will continue to look for opportunities to implement the recommendations of the Final Report.
- Continued public education and involvement is needed.

Stormwater Management Division Watershed Studies webpage:

http://www.co.ho.md.us/DPW/wras.htm