Traffic Signal Warrants

Summary of Traffic Signal Warrant Analysis

```
Intersection: MD 99 (Old Frederick Road) and Taylor Farm Road
Location: Howard County
Study Year: 2018 Existing Condition
Study Date: n/a
```


Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). In place of a count, trip generation estimates were used based on the ITE Trip Generation $10^{\text {th }}$ Edition methodology. Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at Taylor Farm Road under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.
$\square 1$ Eight-Hour vehicular volume
$\square 2$ Four-Hour vehicular volume
$\square 3$ Peak Hour
$\square 5$ School Crossing7 Crash Experience
\square NO

NO
区NO

NO $\boxtimes N / A$
\square
\square YES
இNO \squareLocation warrants signalization under warrant(s)
\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.
YEAR ANALYZED 2018
Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)
Number of lanes of moving traffic on each major street approach:
Minor Street: Taylor Farm Road
Number of lanes of moving traffic on each minor street approach:
$1 \mathrm{~EB}, 1 \mathrm{WB}$

Posted speed limit along MD 99: 40 MPH

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:

| Warrant 3, Peak Hour | WARRANT SATISFIED: \quad yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day: yes $\square \quad$ no \boxtimes

Condition satisfied

1. The total delay experienced by the traffic on one minor-street approach yes \square no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals yes $\square \quad$ no \boxtimes or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for yes \qquad no \boxtimes intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes $\square \quad$ no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.

Warrant 7, Crash Experience

 WARRANT SATISFIED: yes no \boxtimesReview of the three year accident report shows 1 crash, which may not be susceptible to improvements under signalized conditions.

This warrant is satisfied when the following apply:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic

Condition satisfied: yesno \boxtimes , yes no \boxtimes control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% yes \square no \boxtimes (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)
*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

Intersection: MD 99 (Old Frederick Road) and Waverly Woods Drive/ Green Clover Road
 Location: Howard County Study Year: 2018 Existing Condition
 Study Date: n/a

Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). In place of a count, trip generation estimates were used based on the ITE Trip Generation $10^{\text {th }}$ Edition methodology. Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at Waverly Woods Drive/Green Clover Road under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.1 Eight-Hour vehicular volumeYESNO
囚 N/A2 Four-Hour vehicular volumeNO
® $/ \mathbf{A}$
3 Peak Hour
\square YES
N/A
$\square 5 \quad$ School Crossing
\square YES
\square YES

X N/A
$\square 7 \quad$ Crash Experience \squareN/A
\square Location warrants signalization under warrant(s)
\boxtimes Location does not warrant signalization based on data collected.

It should be noted that the study intersection is within a school zone.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.
YEAR ANALYZED 2018
Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)

Number of lanes of moving traffic on each major street approach:
Minor Street: Waverly Woods Drive/Green Clover Road
Number of lanes of moving traffic on each minor street approach:
Posted speed limit along MD 99: 40 MPH

$1 \mathrm{~EB}, 1 \mathrm{WB}$

$1 \mathrm{NB}, 1 \mathrm{SB}$

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:

| Warrant 3, Peak Hour \quad WARRANT SATISFIED: \quad yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day: yes $\square \quad$ no \boxtimes

Condition satisfied

1. The total delay experienced by the traffic on one minor-street approach yes \square no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals yes $\square \quad$ no \boxtimes or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for yes \square no \boxtimes intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes $\square \quad$ no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.

Warrant 7, Crash Experience

 WARRANT SATISFIED:yes \square no \boxtimes

Review of the three year accident report shows 2 crashes, which would not be susceptible to improvements under signalized conditions.

This warrant is satisfied when the following apply:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic

Condition satisfied: yesno \boxtimes , yes no \boxtimes control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% yes \square no \boxtimes (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)
*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

Intersection Bethany Lane and Postwick Road Location：Howard County
Study Year： 2018 Existing Condition
Study Date：05／22／2018

Warrant Analysis：

The SHA＇s DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices（MUTCD）．Based on the results of the evaluation，the Data Services Engineering Division（DSED）－Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of Bethany Lane at Postwick Road under 2018 Existing Conditions．The intersection meets one of the traffic signal warrants．

1	Eight－Hour vehicular volume	\square YES	】 NO	\square N／A
$\square 2$	Four－Hour vehicular volume	\square YES	】 NO	\square N／A
$\square 3$	Peak Hour	\square YES	®NO	\square N／A
$\square 5$	School Crossing	\square YES	】 NO	\square N／A
$\square 7$	Crash Experience	\square YES	】 NO	$\square \mathrm{N} / \mathrm{A}$

\square Location warrants signalization under warrant（s）

\boxtimes Location does not warrant signalization based on data collected．

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.

YEAR ANALYZED 2018

Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: Bethany Lane

Number of lanes of moving traffic on each major street approach:
Minor Street: Postwick Road
Number of lanes of moving traffic on each minor street approach:
Posted speed limit along MD 99: 30 MPH
$1 \mathrm{NB}, 1 \mathrm{SB}$
$1 \mathrm{~EB}, 1 \mathrm{WB}$

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:
Warrant 1, Eight-Hour Vehicular Volume \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when one of the following apply
Condition satisfied:

A. Minimum Vehicular Volume

yes
no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: $\mathbf{4 0 0} \mathbf{v p h}$ for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: $\mathbf{1 2 0}$ vph for $\mathbf{8 0 \%} \%$ since the major street $85^{\text {th }}$ percentile speed $\leq \mathbf{4 0} \mathbf{M P H},=1$ lanes on major and = 1 minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	Bethany Lane	15	Postwick Road	42	yes \square	no \boxtimes
07:00 AM - 08:00 AM	Bethany Lane	687	Postwick Road	77	yes \square	no \boxtimes
08:00 AM - 09:00 AM	Bethany Lane	635	Postwick Road	62	yes \square	no \boxtimes
09:00 AM - 10:00 AM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
10:00 AM - 11:00 AM	Bethany Lane	10	Postwick Road	11	yes \square	no \boxtimes
11:00 AM - 12:00 PM	Bethany Lane	15	Postwick Road	8	yes \square	no \boxtimes
12:00 PM - 01:00 PM	Bethany Lane	13	Postwick Road	9	yes \square	no \boxtimes
01:00 PM - 02:00 PM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
02:00 PM - 03:00 PM	Bethany Lane	13	Postwick Road	10	yes \square	no \boxtimes
03:00 PM - 04:00 PM	Bethany Lane	15	Postwick Road	14	yes \square	no \boxtimes
04:00 PM - 05:00 PM	Bethany Lane	179	Postwick Road	62	yes \square	no \boxtimes
05:00 PM - 06:00 PM	Bethany Lane	910	Postwick Road	83	yes \square	no \boxtimes
06:00 PM - 07:00 PM	Bethany Lane	549	Postwick Road	44	yes \square	no \boxtimes

B. The Interruption of Continuous Traffic
yes
no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: 600 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: 60 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	Bethany Lane	15	Postwick Road	42	yes \square	no \boxtimes
07:00 AM - 08:00 AM	Bethany Lane	687	Postwick Road	77	yes \square	no \boxtimes
08:00 AM - 09:00 AM	Bethany Lane	635	Postwick Road	62	yes \square	no \boxtimes
09:00 AM - 10:00 AM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
10:00 AM - 11:00 AM	Bethany Lane	10	Postwick Road	11	yes \square	no \boxtimes
11:00 AM - 12:00 PM	Bethany Lane	15	Postwick Road	8	yes \square	no \boxtimes
12:00 PM - 01:00 PM	Bethany Lane	13	Postwick Road	9	yes \square	no \boxtimes
01:00 PM - 02:00 PM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
02:00 PM - 03:00 PM	Bethany Lane	13	Postwick Road	10	yes \square	no \boxtimes
03:00 PM - 04:00 PM	Bethany Lane	15	Postwick Road	14	yes \square	no \boxtimes
04:00 PM - 05:00 PM	Bethany Lane	179	Postwick Road	62	yes \square	no \boxtimes
05:00 PM - 06:00 PM	Bethany Lane	910	Postwick Road	83	yes \boxtimes	no \square
06:00 PM - 07:00 PM	Bethany Lane	549	Postwick Road	44	yes \square	no \boxtimes

Warrant 2, Four-Hour Vehicular Volume \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

The Four-Hour Volume Warrant is satisfied when for each of any four hours of an average day, the plotted points representing the vehicles per hour on the major-street and the corresponding vehicles per hour on the higher volume minor-street all fall above the curve in Figure A since the major street $85^{\text {th }}$ Percentile Speed ≤ 40 MPH. The lower threshold volume for minor street is 80 vph .

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	Bethany Lane	15	Postwick Road	42	yes \square	no \boxtimes
07:00 AM - 08:00 AM	Bethany Lane	687	Postwick Road	77	yes \square	no \boxtimes
08:00 AM - 09:00 AM	Bethany Lane	635	Postwick Road	62	yes \square	no \boxtimes
09:00 AM - 10:00 AM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
10:00 AM - 11:00 AM	Bethany Lane	10	Postwick Road	11	yes \square	no \boxtimes
11:00 AM - 12:00 PM	Bethany Lane	15	Postwick Road	8	yes \square	no \boxtimes
12:00 PM - 01:00 PM	Bethany Lane	13	Postwick Road	9	yes \square	no \boxtimes
01:00 PM - 02:00 PM	Bethany Lane	15	Postwick Road	11	yes \square	no \boxtimes
02:00 PM - 03:00 PM	Bethany Lane	13	Postwick Road	10	yes \square	no \boxtimes
03:00 PM - 04:00 PM	Bethany Lane	15	Postwick Road	14	yes \square	no \boxtimes
04:00 PM - 05:00 PM	Bethany Lane	179	Postwick Road	62	yes \square	no \boxtimes

05:00 PM - 06:00 PM	Bethany Lane	910	Postwick Road	83	yes \square	no \boxtimes
06:00 PM - 07:00 PM	Bethany Lane	549	Postwick Road	44	yes \square	no \boxtimes

Warrant 3, Peak Hour

WARRANT SATISFIED:

yes

 no \searrowThis warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day:

1. The total delay experienced by the traffic on one minor-street approach

Condition satisfied yes $\square \quad$ no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes $\square \quad$ no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.
Warrant 5, School Crossing WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when the study of the frequency and adequacy of gaps in vehicular traffic stream as related to number and size of groups of school children at an established school crossing across a major street shows that the number of adequate gaps in the traffic stream during the period when children are using the crossing is less than the number of minutes in the same period and that there are a minimum of twenty (20) students during the highest crossing hour.
Warrant 7, Crash Experience \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

Review of the three year accident report shows 0 crashes.
This warrant is satisfied when the following apply:

Condition satisfied:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% yesno \boxtimes (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)

*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

```
Intersection MD 99 and Liter Drive
Location: Howard County
Study Year: 2018 Existing Condition
Study Date: n/a
```


Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). In place of a count, trip generation estimates were used based on the ITE Trip Generation $10^{\text {th }}$ Edition methodology. Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at Liter Drive under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.
$\square 1$ Eight-Hour vehicular volume
\square YES
NO
® $/$ /A

2 Four-Hour vehicular volume
YE
\square YES
\square YES
】NO7 Crash Experience \square

N/A
$\boxtimes \mathbf{N} / \mathbf{A}$
N/A
$\boxtimes \mathbf{N} / \mathbf{A}$Location warrants signalization under warrant(s)
\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.
YEAR ANALYZED 2018
Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)

Number of lanes of moving traffic on each major street approach:
Minor Street: Liter Drive
Number of lanes of moving traffic on each minor street approach:
Posted speed limit along MD 99: 40 MPH

$1 \mathrm{~EB}, 1 \mathrm{WB}$

$1 \mathrm{NB}, 1 \mathrm{SB}$

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:

| Warrant 3, Peak Hour \quad WARRANT SATISFIED: \quad yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day:
yes $\square \quad$ no \boxtimes

1. The total delay experienced by the traffic on one minor-street approach

Condition satisfied (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes \square no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.

Warrant 7, Crash Experience

 WARRANT SATISFIED:yes \square no \boxtimes

Review of the three year accident report shows 1 crash, which would not be susceptible to improvements under signalized conditions.

This warrant is satisfied when the following apply:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic

Condition satisfied: yesno \boxtimes , yes no \boxtimes control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% yes \square no \boxtimes (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)
*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

```
Intersection MD 99 and Weatherstone Drive
Location: Howard County
Study Year: 2018 Existing Condition
Study Date: n/a
```


Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). In place of a count, trip generation estimates were used based on the ITE Trip Generation $10^{\text {th }}$ Edition methodology. Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at Weatherstone Drive under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.
$\square 1$ Eight-Hour vehicular volume
$\square 2$ Four-Hour vehicular volume
$\square 3$ Peak Hour
$\square 5$ School Crossing7 Crash Experience
\square NO

NO

\square NO
】NO
\square
\square YES

Location warrants signalization under warrant(s)

\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.
YEAR ANALYZED 2018
Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)
Number of lanes of moving traffic on each major street approach:
Minor Street: Weatherstone Drive
Number of lanes of moving traffic on each minor street approach: $\quad \mathbf{1} \mathbf{N B}, 1 \mathbf{S B}$
Posted speed limit along MD 99: 40 MPH
$1 \mathrm{~EB}, 1 \mathrm{WB}$

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:

| Warrant 3, Peak Hour \quad WARRANT SATISFIED: \quad yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day:
yes $\square \quad$ no \boxtimes
Condition satisfied yes $\square \quad$ no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes \square no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.

Warrant 7, Crash Experience

 WARRANT SATISFIED: yes no \boxtimesReview of the three year accident report shows 0 crashes.

This warrant is satisfied when the following apply:

Condition satisfied: yes \square no \boxtimes

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)
*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

Intersection MD 99 and McKenzie Road Location: Howard County
 Study Year: 2018 Existing Condition
 Count Date: 04/05/2016

Warrant Analysis:

SAI performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). Based on the results of the evaluation, the installation of a traffic signal is not recommend at the intersection of MD 99 (Old Frederick Road) at McKenzie Road under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.

| $\square 1$ | Eight-Hour vehicular volume | \square YES | $\boxed{\text { NO }}$ |
| :--- | :--- | :--- | :--- |$\quad \square$ N/A

\square Location warrants signalization under warrant(s)
\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.

YEAR ANALYZED 2016
Does the intersection lie within the built-up area of an isolated community
yes \square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)
Number of lanes of moving traffic on each major street approach:
$1 \mathrm{~EB}, 1 \mathrm{WB}$
Minor Street: McKenzie Road
Number of lanes of moving traffic on each minor street approach: $\quad \mathbf{1} \mathbf{N B}, \mathbf{1} \mathbf{S B}$
Posted speed limit along MD 99: 40 MPH

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:
Warrant 1, Eight-Hour Vehicular Volume \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when one of the following apply
Condition satisfied:

A. Minimum Vehicular Volume

yes \square no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: $\mathbf{4 0 0} \mathbf{v p h}$ for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: $\mathbf{1 2 0}$ vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq \mathbf{4 0} \mathbf{M P H},=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume		Requirement Satisfied	
06:00 AM - 07:00 AM	MD 99	407	McKenzie Road	28	yes \square	no \boxtimes	
07:00 AM - 08:00 AM	MD 99	1064	McKenzie Road	67	yes \square	no \boxtimes	
08:00 AM - 09:00 AM	MD 99	1280	McKenzie Road	69	yes \square	no \boxtimes	
09:00 AM - 10:00 AM	MD 99	826	McKenzie Road	39	yes \square	no \boxtimes	
10:00 AM - 11:00 AM	MD 99	561	McKenzie Road	34	yes \square	no \boxtimes	
11:00 AM - 12:00 PM	MD 99	540	McKenzie Road	33	yes \square	no \boxtimes	
12:00 PM - 01:00 PM	MD 99	547	McKenzie Road	47	yes \square	no \boxtimes	
01:00 PM - 02:00 PM	MD 99	635	McKenzie Road	42	yes \square	no \boxtimes	
02:00 PM - 03:00 PM	MD 99	737	McKenzie Road	48	yes \square	no \boxtimes	
03:00 PM - 04:00 PM	MD 99	854	McKenzie Road	27	yes \square	no \boxtimes	
04:00 PM - 05:00 PM	MD 99	1309	McKenzie Road	55	yes \square	no \boxtimes	
05:00 PM - 06:00 PM	MD 99	1290	McKenzie Road	43	yes \square	no \boxtimes	
06:00 PM - 07:00 PM	MD 99	1175	McKenzie Road	52	yes \square	no \boxtimes	

B. The Interruption of Continuous Traffic
yes
\square
no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: 600 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: 60 vph for 80% since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	MD 99	407	McKenzie Road	28	yes \square	no \boxtimes
07:30 AM - 08:30 AM	MD 99	1253	McKenzie Road	72	yes \boxtimes	no \square
08:30 AM - 09:30 AM	MD 99	1077	McKenzie Road	59	yes \square	no \boxtimes
09:30 AM - 10:30 AM	MD 99	650	McKenzie Road	30	yes \square	no \boxtimes
10:30 AM - 11:30 AM	MD 99	531	McKenzie Road	33	yes \square	no \boxtimes
11:30 AM - 12:30 PM	MD 99	535	McKenzie Road	42	yes \square	no \boxtimes
12:30 PM - 01:30 PM	MD 99	589	McKenzie Road	49	yes \square	no \boxtimes
01:30 PM - 02:30 PM	MD 99	648	McKenzie Road	38	yes \square	no \boxtimes
02:00 PM - 03:00 PM	MD 99	737	McKenzie Road	48	yes \square	no \boxtimes
02:30 PM - 03:30 PM	MD 99	808	McKenzie Road	38	yes \square	no \boxtimes
03:00 PM - 04:00 PM	MD 99	854	McKenzie Road	27	yes \square	no \boxtimes
03:30 PM - 04:30 PM	MD 99	1098	McKenzie Road	50	yes \square	no \boxtimes
04:00 PM - 05:00 PM	MD 99	1309	McKenzie Road	55	yes \square	no \boxtimes
04:30 PM - 05:30 PM	MD 99	1334	McKenzie Road	43	yes \square	no \boxtimes
05:00 PM - 06:00 PM	MD 99	1290	McKenzie Road	43	yes \square	no \boxtimes
06:00 PM - 07:00 PM	MD 99	1175	McKenzie Road	52	yes \square	no \boxtimes

Warrant 2, Four-Hour Vehicular Volume WARRANT SATISFIED: yes no \boxtimes

The Four-Hour Volume Warrant is satisfied when for each of any four hours of an average day, the plotted points representing the vehicles per hour on the major-street and the corresponding vehicles per hour on the higher volume minor-street all fall above the curve in Figure A since the major street $85^{\text {th }}$ Percentile Speed ≤ 40 MPH. The lower threshold volume for minor street is 80 vph .

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	MD 99	407	McKenzie Road	28	yes \square	no \boxtimes
07:30 AM - 08:30 AM	MD 99	1253	McKenzie Road	72	yes \square	no \boxtimes
08:30 AM - 09:30 AM	MD 99	1077	McKenzie Road	59	yes \square	no \boxtimes
09:30 AM - 10:30 AM	MD 99	650	McKenzie Road	30	yes \square	no \boxtimes
10:30 AM - 11:30 AM	MD 99	531	McKenzie Road	33	yes \square	no \boxtimes
11:30 AM - 12:30 PM	MD 99	535	McKenzie Road	42	yes \square	no \boxtimes
12:30 PM -01:30 PM	MD 99	589	McKenzie Road	49	yes \square	no \boxtimes

01:30 PM - 02:30 PM	MD 99	648	McKenzie Road	38	yes \square	no \boxtimes
02:00 PM - 03:00 PM	MD 99	737	McKenzie Road	48	yes \square	no \boxtimes
02:30 PM - 03:30 PM	MD 99	808	McKenzie Road	38	yes \square	no \boxtimes
03:00 PM - 04:00 PM	MD 99	854	McKenzie Road	27	yes \square	no \boxtimes
03:30 PM - 04:30 PM	MD 99	1098	McKenzie Road	50	yes \square	no \boxtimes
04:00 PM - 05:00 PM	MD 99	1309	McKenzie Road	55	yes \square	no \boxtimes

| Warrant 3, Peak Hour \quad WARRANT SATISFIED: \quad yes \square no $\boxtimes ~$ |
| :--- | :--- | :--- |

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day: yes $\square \quad$ no \boxtimes

1. The total delay experienced by the traffic on one minor-street approach (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals yes \square no \boxtimes or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes $\square \quad$ no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.
Warrant 5, School Crossing WARRANT SATISFIED: yes \square no \boxtimes

This warrant is satisfied when the study of the frequency and adequacy of gaps in vehicular traffic stream as related to number and size of groups of school children at an established school crossing across a major street shows that the number of adequate gaps in the traffic stream during the period when children are using the crossing is less than the number of minutes in the same period and that there are a minimum of twenty (20) students during the highest crossing hour.

Though Warrant 5 is not satisfied, it should be noted that the intersection is in the walkshed of Mount Hebron High School.
Warrant 7, Crash Experience WARRANT SATISFIED: yes \square no \boxtimes

Review of the three year accident report shows 3 crashes, though none of them are likely susceptible to improvement with a traffic signal.

This warrant is satisfied when the following apply:

Condition satisfied:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)

*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

```
Intersection MD 99 and West Mount Hebron High School Entrance
Location: Howard County
Study Year: 2018 Existing Condition
Study Date: 05/15/2018
```


Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at the west Mount Hebron High School entrance under 2018 Existing Conditions. The intersection meets one of the traffic signal warrants.

$\square 1$	Eight-Hour vehicular volume	\square YES	\boxtimes NO
$\square 2$	Four-Hour vehicular volume	\square N/A	
$\square 3$	Peak Hour	\boxtimes NO	\square N/A
$\square 5$	School Crossing	\square YES	\boxtimes NO
$\square 7$ N/A			
$\square 7$ Crash Experience	\square YES	\square NO	\square N/A

\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.

YEAR ANALYZED 2018
Does the intersection lie within the built-up area of an isolated community
yes \square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)
Number of lanes of moving traffic on each major street approach:
$1 \mathrm{~EB}, 1 \mathrm{WB}$
Minor Street: West Mount Hebron High School Entrance
Number of lanes of moving traffic on each minor street approach: $\mathbf{1} \mathbf{N B}, 1 \mathbf{S B}$
Posted speed limit along MD 99: 40 MPH

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:
Warrant 1, Eight-Hour Vehicular Volume \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when one of the following apply
Condition satisfied:

A. Minimum Vehicular Volume

yes \square no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: $\mathbf{4 0 0} \mathbf{v p h}$ for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq \mathbf{4 0} \mathrm{MPH},=\mathbf{1}$ lanes on major and $=1$ minor lane
Minor Street: $\mathbf{1 2 0}$ vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq \mathbf{4 0} \mathbf{M P H},=1$ lanes on major and = 1 minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
$\begin{gathered} \hline 06: 00 \mathrm{AM}- \\ 07: 00 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	675	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
$\begin{gathered} \text { 07:00 AM - } \\ 08: 00 \mathrm{AM} \end{gathered}$	MD 99	1268	West Mount Hebron High School Entrance	120	yes \boxtimes	no \square
$\begin{gathered} \text { 08:00 AM - } \\ \text { 09:00 AM } \\ \hline \end{gathered}$	MD 99	505	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
$\begin{gathered} \hline \text { 09:00 AM - } \\ \text { 10:00 AM } \end{gathered}$	MD 99	17	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
$\begin{gathered} \text { 10:00 AM - } \\ \text { 11:00 AM } \\ \hline \end{gathered}$	MD 99	16	West Mount Hebron High School Entrance	10	yes \square	no \boxtimes
$\begin{gathered} \text { 11:00 AM - } \\ \text { 12:00 PM } \\ \hline \end{gathered}$	MD 99	11	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
12:00 PM -	MD 99	14	West Mount Hebron High School	13	yes \square	no 区

01:00 PM			Entrance			
$\begin{gathered} \text { 01:00 PM - } \\ 02: 00 \mathrm{PM} \\ \hline \end{gathered}$	MD 99	554	West Mount Hebron High School Entrance	52	yes \square	no \boxtimes
$\begin{gathered} \text { 02:00 PM - } \\ \text { 03:00 PM } \end{gathered}$	MD 99	354	West Mount Hebron High School Entrance	57	yes \square	no \boxtimes
$\begin{gathered} \text { 03:00 PM - } \\ \text { 04:00 PM } \end{gathered}$	MD 99	18	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
$\begin{gathered} \text { 04:00 PM - } \\ \text { 05:00 PM } \end{gathered}$	MD 99	1064	West Mount Hebron High School Entrance	20	yes \square	no \boxtimes
$\begin{gathered} \hline \text { 05:00 PM - } \\ \text { 06:00 PM } \end{gathered}$	MD 99	1588	West Mount Hebron High School Entrance	22	yes \square	no \boxtimes
$\begin{gathered} \text { 06:00 PM - } \\ \text { 07:00 PM } \end{gathered}$	MD 99	574	West Mount Hebron High School Entrance	36	yes \square	no \boxtimes

B. The Interruption of Continuous Traffic
yes
no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: 600 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: 60 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH}$, $=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
$\begin{gathered} \hline 06: 15 \mathrm{AM}- \\ 07: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	999	West Mount Hebron High School Entrance	81	yes \boxtimes	no \square
$\begin{gathered} \hline 07: 15 \mathrm{AM}- \\ 08: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	1190	West Mount Hebron High School Entrance	49	yes \square	no \boxtimes
$\begin{gathered} 08: 15 \mathrm{AM}- \\ 09: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	274	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
$\begin{gathered} \hline 09: 15 \mathrm{AM}- \\ 10: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	14	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
$\begin{gathered} \hline 10: 15 \mathrm{AM}- \\ 11: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	16	West Mount Hebron High School Entrance	13	yes \square	no \boxtimes
$\begin{gathered} 11: 15 \mathrm{AM}- \\ 12: 15 \mathrm{PM} \end{gathered}$	MD 99	11	West Mount Hebron High School Entrance	12	yes \square	no \boxtimes
$\begin{gathered} \text { 12:15 PM - } \\ 01: 15 \mathrm{PM} \end{gathered}$	MD 99	135	West Mount Hebron High School Entrance	12	yes \square	no \boxtimes
$\begin{gathered} 01: 15 \mathrm{PM}- \\ 02: 15 \mathrm{PM} \\ \hline \end{gathered}$	MD 99	511	West Mount Hebron High School Entrance	103	yes \boxtimes	no \square
$\begin{gathered} \text { 02:00 PM - } \\ \text { 03:00 PM } \end{gathered}$	MD 99	354	West Mount Hebron High School Entrance	57	yes \square	no \boxtimes
$\begin{gathered} 02: 15 \mathrm{PM}- \\ 03: 15 \mathrm{PM} \end{gathered}$	MD 99	276	West Mount Hebron High School Entrance	14	yes \square	no \boxtimes
$\begin{gathered} \text { 04:00 PM - } \\ \text { 05:00 PM } \end{gathered}$	MD 99	18	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes

04:15 PM - 05:15 PM	MD 99	288	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
05:00 PM - $06: 00 ~ P M ~$	MD 99	1064	West Mount Hebron High School Entrance	22	yes \square	no \boxtimes

\section*{| Warrant 2, Four-Hour Vehicular Volume | WARRANT SATISFIED: | yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |}

The Four-Hour Volume Warrant is satisfied when for each of any four hours of an average day, the plotted points representing the vehicles per hour on the major-street and the corresponding vehicles per hour on the higher volume minor-street all fall above the curve in Figure A since the major street $85^{\text {th }}$ Percentile Speed ≤ 40 MPH. The lower threshold volume for minor street is 80 vph .

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
$\begin{gathered} 06: 15 \mathrm{AM}- \\ 07: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	999	West Mount Hebron High School Entrance	81	yes \boxtimes	no \square
$\begin{gathered} \hline 07: 15 \mathrm{AM}- \\ 08: 15 \mathrm{AM} \end{gathered}$	MD 99	1190	West Mount Hebron High School Entrance	49	yes \square	no \boxtimes
$\begin{gathered} 08: 15 \mathrm{AM}- \\ 09: 15 \mathrm{AM} \\ \hline \end{gathered}$	MD 99	274	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
$\begin{gathered} \hline 09: 15 \mathrm{AM}- \\ 10: 15 \mathrm{AM} \end{gathered}$	MD 99	14	West Mount Hebron High School Entrance	15	yes \square	no \boxtimes
$\begin{gathered} \text { 10:15 AM - } \\ \text { 11:15 AM } \end{gathered}$	MD 99	16	West Mount Hebron High School Entrance	13	yes \square	no \boxtimes
$\begin{gathered} \text { 11:15 AM - } \\ \text { 12:15 PM } \end{gathered}$	MD 99	11	West Mount Hebron High School Entrance	12	yes \square	no \boxtimes
$\begin{gathered} 12: 15 \mathrm{PM}- \\ 01: 15 \mathrm{PM} \end{gathered}$	MD 99	135	West Mount Hebron High School Entrance	12	yes \square	no \boxtimes
$\begin{gathered} 01: 15 \mathrm{PM}- \\ 02: 15 \mathrm{PM} \end{gathered}$	MD 99	511	West Mount Hebron High School Entrance	103	yes \boxtimes	no \square
$\begin{gathered} 02: 15 \mathrm{PM}- \\ 03: 15 \mathrm{PM} \end{gathered}$	MD 99	276	West Mount Hebron High School Entrance	14	yes \square	no \boxtimes
$\begin{gathered} 03: 15 \mathrm{PM}- \\ 04: 15 \mathrm{PM} \end{gathered}$	MD 99	288	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
$\begin{gathered} \hline 04: 15 \mathrm{PM}- \\ 05: 15 \mathrm{PM} \end{gathered}$	MD 99	1178	West Mount Hebron High School Entrance	17	yes \square	no \boxtimes
$\begin{gathered} 05: 15 \mathrm{PM}- \\ 06: 15 \mathrm{PM} \\ \hline \end{gathered}$	MD 99	1491	West Mount Hebron High School Entrance	37	yes \square	no \boxtimes
$\begin{gathered} \hline 06: 15 \mathrm{PM}- \\ 07: 15 \mathrm{PM} \\ \hline \end{gathered}$	MD 99	380	West Mount Hebron High School Entrance	25	yes \square	no \boxtimes

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day:

Condition satisfied

1. The total delay experienced by the traffic on one minor-street approach yes \square no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals yes $\square \quad$ no \boxtimes or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.
Warrant 5, School Crossing \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when the study of the frequency and adequacy of gaps in vehicular traffic stream as related to number and size of groups of school children at an established school crossing across a major street shows that the number of adequate gaps in the traffic stream during the period when children are using the crossing is less than the number of minutes in the same period and that there are a minimum of twenty (20) students during the highest crossing hour.

Though Warrant 5 is not met, it should be noted that this intersection is within a school zone.

| Warrant 7, Crash Experience | WARRANT SATISFIED: \quad yes \square | no \boxtimes |
| :--- | :--- | :--- | :--- |

Review of the three year accident report shows 1 crash, which is not susceptible to correction by a traffic signal.

This warrant is satisfied when the following apply:

2. Five or more reported crashes, of types susceptible to correction by traffic control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)
*Note: 93 pph applies as the lower threshold volume.

Summary of Traffic Signal Warrant Analysis

Intersection MD 99 and Tiller Drive
Location: Howard County
Study Year: 2018 Existing Condition
Study Date: 04/17/2016

Warrant Analysis:

The SHA's DSED performed a traffic signal warrant analysis in May of 2018 based on the nationally accepted Manual on Uniform Traffic Control Devices (MUTCD). Based on the results of the evaluation, the Data Services Engineering Division (DSED) - Travel Forecasting and Analysis office does not recommend the installation of a traffic signal at the intersection of MD 99 (Old Frederick Road) at Tiller Drive under 2018 Existing Conditions. The intersection meets none of the traffic signal warrants.
$\square 1$ Eight-Hour vehicular volume
\square YES

\boxtimes NO	$\square \mathbf{N} / \mathbf{A}$
$\boxtimes \mathbf{N O}$	$\square \mathbf{N} / \mathbf{A}$
$\boxtimes \mathbf{N O}$	$\square \mathbf{N} / \mathbf{A}$
$\boxtimes \mathbf{N O}$	$\square \mathbf{N} / \mathbf{A}$
$\square \mathbf{N O}$	$\square \mathbf{N} / \mathbf{A}$

Location warrants signalization under warrant(s)

\boxtimes Location does not warrant signalization based on data collected.

Traffic Signal Warrant Analysis

Source: Federal Highway Administration, Manual on Uniform Traffic Control Devices, 2011.

YEAR ANALYZED 2016
Does the intersection lie within the built-up area of an isolated community
yes \square
\square no \boxtimes having a population of less than 10,000 ?

Major Street: MD 99 (Old Frederick Road)

Number of lanes of moving traffic on each major street approach:
Minor Street: Tiller Drive
Number of lanes of moving traffic on each minor street approach:
Posted speed limit along MD 99: 40 MPH

$1 \mathrm{~EB}, 1 \mathrm{WB}$

$1 \mathrm{NB}, 1 \mathrm{SB}$

Warrants for Traffic Signal Installation

Traffic control signal may be justified at an intersection, driveway or mid-block pedestrian crossing, if one or more of the following warrants are satisfied:
Warrant 1, Eight-Hour Vehicular Volume \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when one of the following apply
Condition satisfied:

A. Minimum Vehicular Volume

yes \square no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: $\mathbf{4 0 0} \mathbf{v p h}$ for $\mathbf{7 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: $\mathbf{1 2 0} \mathbf{v p h}$ for $\mathbf{7 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH}$, $=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:00 AM - 07:00 AM	MD 99	447	Tiller Drive	33	yes \square	no \boxtimes
07:00 AM - 08:00 AM	MD 99	1485	Tiller Drive	111	yes \square	no \boxtimes
08:00 AM - 09:00 AM	MD 99	1196	Tiller Drive	95	yes \square	no \boxtimes
09:00 AM - 10:00 AM	MD 99	892	Tiller Drive	72	yes \square	no \boxtimes
10:00 AM - 11:00 AM	MD 99	552	Tiller Drive	40	yes \square	no \boxtimes
11:00 AM - 12:00 PM	MD 99	511	Tiller Drive	39	yes \square	no \boxtimes
12:00 PM - 01:00 PM	MD 99	579	Tiller Drive	32	yes \square	no \boxtimes
01:00 PM - 02:00 PM	MD 99	666	Tiller Drive	31	yes \square	no \boxtimes
02:00 PM - 03:00 PM	MD 99	835	Tiller Drive	42	yes \square	no \boxtimes
03:00 PM - 04:00 PM	MD 99	1115	Tiller Drive	29	yes \square	no \boxtimes
04:00 PM - 05:00 PM	MD 99	1501	Tiller Drive	35	yes \square	no \boxtimes
05:00 PM - 06:00 PM	MD 99	1466	Tiller Drive	34	yes \square	no \boxtimes
06:00 PM - 07:00 PM	MD 99	1430	Tiller Drive	44	yes \square	no \boxtimes

B. The Interruption of Continuous Traffic
yes
\square
no \boxtimes
For each of any 8 hours of an average day, the vehicles per hour on the major street and on the highervolume minor street or driveway approach to the intersection equal or exceed the following:

Major Street: 600 vph for $\mathbf{8 0 \%}$ since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane
Minor Street: 60 vph for 80% since the major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{MPH},=1$ lanes on major and $=1$ minor lane

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:30 AM - 07:30 AM	MD 99	1215	Tiller Drive	83	yes \boxtimes	no \square
07:30 AM - 08:30 AM	MD 99	1323	Tiller Drive	107	yes \boxtimes	no \square
08:30 AM - 09:30 AM	MD 99	1028	Tiller Drive	85	yes \boxtimes	no \square
09:30 AM - 10:30 AM	MD 99	668	Tiller Drive	63	yes \boxtimes	no \square
10:30 AM - 11:30 AM	MD 99	538	Tiller Drive	29	yes \square	no \boxtimes
11:30 AM - 12:30 PM	MD 99	598	Tiller Drive	44	yes \square	no \boxtimes
12:30 PM - 01:30 PM	MD 99	735	Tiller Drive	25	yes \square	no \boxtimes
01:30 PM - 02:30 PM	MD 99	865	Tiller Drive	44	yes \square	no \boxtimes
02:00 PM - 03:00 PM	MD 99	835	Tiller Drive	42	yes \square	no \boxtimes
02:30 PM - 03:30 PM	MD 99	1316	Tiller Drive	25	yes \square	no \boxtimes
03:00 PM - 04:00 PM	MD 99	1115	Tiller Drive	29	yes \square	no \boxtimes
03:30 PM - 04:30 PM	MD 99	1511	Tiller Drive	35	yes \square	no \boxtimes
04:00 PM - 05:00 PM	MD 99	1501	Tiller Drive	35	yes \square	no \boxtimes
04:30 PM -05:30 PM	MD 99	1497	Tiller Drive	34	yes \square	no \boxtimes
05:00 PM -06:00 PM	MD 99	1466	Tiller Drive	34	yes \square	no \boxtimes
05:30 PM -06:30 PM	MD 99	1193	Tiller Drive	44	yes \square	no \boxtimes

Warrant 2, Four-Hour Vehicular Volume

 WARRANT SATISFIED: yes no \boxtimesThe Four-Hour Volume Warrant is satisfied when for each of any four hours of an average day, the plotted points representing the vehicles per hour on the major-street and the corresponding vehicles per hour on the higher volume minor-street all fall above the curve in Figure A since the major street $85^{\text {th }}$ Percentile Speed ≤ 40 MPH. The lower threshold volume for minor street is 80 vph .

Time	Major Street	Volume	Minor Street	Volume	Requirement Satisfied	
06:30 AM - 07:30 AM	MD 99	1215	Tiller Drive	83	yes \boxtimes	no \square
07:30 AM - 08:30 AM	MD 99	1323	Tiller Drive	107	yes \boxtimes	no \square
08:30 AM - 09:30 AM	MD 99	1028	Tiller Drive	85	yes \boxtimes	no \square
09:30 AM - 10:30 AM	MD 99	668	Tiller Drive	63	yes \square	no \boxtimes
10:30 AM - 11:30 AM	MD 99	538	Tiller Drive	29	yes \square	no \boxtimes
11:30 AM - 12:30 PM	MD 99	598	Tiller Drive	44	yes \square	no \boxtimes
12:30 PM - 01:30 PM	MD 99	735	Tiller Drive	25	yes \square	no \boxtimes
01:30 PM - 02:30 PM	MD 99	865	Tiller Drive	44	yes \square	no \boxtimes
02:30 PM - 03:30 PM	MD 99	1316	Tiller Drive	25	yes \square	no \boxtimes

03:30 PM - 04:30 PM	MD 99	1511	Tiller Drive	35	yes \square	no \boxtimes
04:30 PM - 05:30 PM	MD 99	1497	Tiller Drive	34	yes \square	no \boxtimes
05:30 PM - 06:30 PM	MD 99	1193	Tiller Drive	44	yes \square	no \boxtimes
06:30 PM - 07:30 PM	MD 99	273	Tiller Drive	22	yes \square	no \boxtimes

Warrant 3, Peak Hour \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

This warrant is satisfied when either of the following two categories apply:
A. If all of the following conditions exist for the same 1 hour of an average day:
no \boxtimes
Condition satisfied

1. The total delay experienced by the traffic on one minor-street approach
yes \square no \boxtimes (one direction only) controlled by a STOP sign equal or exceeds: four vehicle-hours for one lane approach; and five vehicle -hours for two-lane approach, and
2. The volume on the same minor-street approach (one direction only) equals yes $\square \quad$ no \boxtimes or exceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes of traffic, and
3. The total entering volume serviced during the hour equals or exceeds 650 vph for yesno \boxtimes intersections with three approaches or 800 vph for intersections with four or more approaches.
B. The plot of vehicles per hour on the major street and the corresponding vehicles yes $\square \quad$ no \boxtimes per hour on the higher-volume minor-street approach for 1 hour of average day falls above the applicable curve in Figure C (major street $85^{\text {th }}$ percentile speed $\leq 40 \mathrm{mph}$) for the combination of approach lanes.

Warrant 5, School Crossing

WARRANT SATISFIED: yes no

This warrant is satisfied when the study of the frequency and adequacy of gaps in vehicular traffic stream as related to number and size of groups of school children at an established school crossing across a major street shows that the number of adequate gaps in the traffic stream during the period when children are using the crossing is less than the number of minutes in the same period and that there are a minimum of twenty (20) students during the highest crossing hour.

Though Warrant 5 is not satisfied, it should be noted that the intersection is in the walkshed of Mount Hebron High School.
Warrant 7, Crash Experience \quad WARRANT SATISFIED: \quad yes \square no \boxtimes

Review of the three year accident report shows 5 crashes. At least two of the crashes could have been prevented by a signalized intersection.

This warrant is satisfied when the following apply:
Condition satisfied:

1. Adequate trial of alternatives, with satisfactory observance and enforcement has failed to reduce the crash frequency and
2. Five or more reported crashes, of types susceptible to correction by traffic control signal; have occurred within a 12-month period, each crash involving personal injury or property damage apparently exceeding the applicable requirements for reportable crashes and
3. There exists a volume of vehicle and pedestrian traffic not less than 56% (major street $85^{\text {th }}$ percentile speed $>40 \mathrm{mph}$) or 80% of the requirements Specified in Warrant 1 or Warrant 5, respectively.

Figure A. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure B. Warrant 2, Four-Hour Vehicular Volume (70\% Factor) (COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure C. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure D. Warrant 3, Peak Hour (70\% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure E. Warrant 4, Pedestrian Four-Hour Volume (70\% Factor)

*Note: 75 pph applies as the lower threshold volume.

Figure F. Warrant 4, Pedestrian Peak Hour (70\% Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)

*Note: 93 pph applies as the lower threshold volume.

